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Abstract

In this paper, we present a novel framework for modelling clustering in natural haz-
ard risk models. The framework we present is founded on physical principles where
large-scale oscillations in the physical system is the source of non-Poissonian (clus-
tered) frequency behaviour. We focus on a particular mathematical implementation of5

the “Super-Cluster” methodology that we introduce. This mathematical framework has
a number of advantages including tunability to the problem at hand, as well as the abil-
ity to model cross-event correlation. Using European windstorm data as an example,
we provide evidence that historical data show strong evidence of clustering. We then
develop Poisson and clustered simulation models for the data, demonstrating clearly10

the superiority of the clustered model which we have implemented using the Poisson-
Mixtures approach. We then discuss the implications of including clustering in models
of prices on catXL contracts, one of the most commonly used mechanisms for trans-
ferring risk between primary insurers and reinsurers. This paper provides a number of
new insights into the impact clustering has on modelled catXL contract prices. The sim-15

ple model presented in this paper provides an insightful starting point for practicioners
of natural hazard risk modelling.

1 Introduction

The broad subject of interest in this paper is natural hazard catastrophe risk modelling.
Natural hazard catastrophe risk models are widely used by the insurance industry to20

address questions related to pricing, capital allocation and risk management. Catastro-
phe risk models are often based on a timeline simulation of the occurrences of a par-
ticular natural phenomenon. The timeline simulation of the natural phenomenon is then
translated into a timeline simulation of financial losses on a portfolio of insured risks.
The timeline simulation of financial loss on a primary insurance company portfolio is25

also used to model the price of contracts which are used to transfer risk to reinsurers
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(which provide insurance for primary insurance companies). This transfer of risk en-
ables improved risk return characteristics of the companies involved in the insurance
market, and provides for a more stable insurance industry which is able to meet the
obligations to policy holders in the event of a natural hazard catastrophe. Catastrophe
models cover natural hazard perils such as North Atlantic hurricane, European wind-5

storm, Asian typhoons, Global earthquakes and floods.
In this paper our focus is on the question of how to model so-called clustered nat-

ural hazard phenomena within the context of natural hazard catastrophe risk mod-
els. A useful starting point for building a catastrophe model is to generate simulations
based on the assumption that the frequency distribution of the underlying process is10

Poisson. While the Poisson assumption is oftentimes sufficient, for some natural phe-
nomenon, models based on the Poisson assumption fail to accurately model the risk.
For example, it is now well known that European windstorms exhibit a strong degree
of clustering (Mailier et al., 2006). European windstorm models which are based on
a Poisson assumption are indeed useful as a starting point for risk assessment. How-15

ever, the Poisson frequency distribution is too restrictive in that timeline simulations
based on the Poisson assumption do not exhibit the degree of variability that is evi-
dent in historical data. As discussed in Mailier et al. (2006), January 1990 and more
recently December 1999 were two months in particular that had a high number of very
intense windstorms causing considerable losses in the insurance industry (greater than20

EUR 10 billion). These two years in particular are difficult to explain by European wind-
storm models that are based on the Poisson assumption, as we will show in this paper.
Other phenomenon of interest such as earthquakes, hurricanes, typhoons and severe
flooding events may also exhibit some degree of clustering.

In this paper, we make a number of novel contributions to the subject of how to25

model clustering within the context natural hazard catastrophe modelling. The research
presented in this paper is a result of our practical experience in building European
windstorm catastrophe models. The contributions of this paper are as follows:
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1. In Sect. 2, we present a novel mathematical framework for modelling clustered
phenomenon called the Super-Cluster methodology. The Super-Clusters method
uses historical data as a starting point for identifying groups of historical events
that are strongly associated with oscillations in the physical system, which is the
source of clustering.5

2. We also provide the mathematical details for a particular implementation of the
Super-Clusters method called Poisson-Mixtures. This implementation offers risk
modelers a practical and theoretically sound framework for implementing cluster-
ing in a meaningful manner.

3. In Sect. 3, using historical data from European windstorms, we demonstrate the10

Poisson-Mixtures implementation of the Super-Clusters method. In doing so, we
show how the historical data is strongly clustered. We develop a clustered model
of the data, and demonstrate clearly the superiority of the clustered model com-
pared to a model based on the Poisson assumption. The example we provide
allows us to develop a high degree of insight in to modelling clustering, but is15

simple enough so that it can be used as a starting point for practitioners

4. Finally in Sect. 4, we provide new insights into the impact that modelling clus-
tering has on so-called catastrophe excess of loss contracts, which is one of the
important mechanisms for transferring risk between primary insurers and reinsur-
ers. These insights are developed using numerical simulations, and to a certain20

degree analytic theory.

In Sect. 5 we provide a summary, discussion and draw conclusions from this work.

2 A Super-Cluster framework for modelling clustered frequency processes

We begin this section by defining clearly what we mean by timeline simulation. We then
discuss our motivation for developing frameworks for modelling so-called clustered25
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processes from the point of view natural hazard risk modelling. We then introduce
a framework for modelling clustered processes which we call the Super-Cluster frame-
work. This Section ends by providing the mathematical details which underlie a partic-
ular application of the Super-Cluster methodology called the Poisson-Mixtures formu-
lation.5

2.1 Motivation and background: poisson vs. clustered timeline simulation

The starting point for risk models we have in mind is a so-called timeline simulation.
A timeline simulation represents event occurrences of phenomena like hurricanes,
earthquakes and windstorms. In Fig. 1 we provide a pictorial illustration. In year 1,
there are 3 events occurring (represented by the dots), in year 2 there are 2 events,10

and so on. On the vertical axis is “Loss” which is a representation of financial loss
against some insured exposure. Time is on the horizontal axis, discretized into years.
Each year represents a draw from the distribution of possible event-loss occurrences.
Whilst event time stamps can be created to reflect the seasonality of the phenomenon
being considered, in this paper we ignore seasonality and consider loss statistics based15

on annual time scales. This choice mimics most common insurance industry practice,
where the vast majority of risk transfer takes place based on annual contracts.

In practice, there is a computer code that generates the timeline simulation, consis-
tent with some underlying frequency distribution like the Poisson or Negative Binomial
distribution. The physics of the system we are trying to model dictates the appropriate-20

ness of any particular frequency distribution choice. In this paper, we are interested in
physical phenomena that exhibit strong “clustered” behaviour. As we will describe be-
low, clustered simulations impose more “structure” on the timeline compared to Poisson
processes. For natural hazards of interest, we assume this structure on the timeline is
associated with some underlying physical driver/modulator. From the timeline simula-25

tion in Fig. 1, we can readily compute the sample mean annual rate by averaging the
sum of annual event occurrences, and we can then compute the (annual) variance
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(or any other moment). These moments should be consistent with the underlying fre-
quency distribution embedded in the computer code (whether clustered or not).

In what follows, our goal is to understand the fundamental differences between Pois-
son and clustered simulations. We will understand why Poisson processes can be
thought of as “unstructured” and/or random, and provide some relevant physical ex-5

amples of clustered phenomena.
We begin by developing our understanding of Poisson timeline simulation. We as-

sume that the starting point for our Poisson simulation is a so-called event table com-
prised of M “events” where each event has a mean annual rate λi where i = 1, . . . ,M,
and each event is simulated using a Poisson distribution. By definition, the average10

annual number of times event i occurs tends towards λi as the length of the timeline
simulation grows to infinity. We assume all events in our event table behave indepen-
dently. We now describe a straightforward way of generating timeline simulations from
this event table (using a Poisson assumption): in year 1 we take a random draw from
a Poisson distribution with total rate λ, which we label as n1 (λ is the total rate taken by15

summing all the λi ). We then select n1 events from the event table, by randomly drawing
events with replacement, where each event has a probability of being chosen propor-
tional to its rate λi . Repeat this process for all subsequent years in the simulation. If
one does so, one will find that the variance σ2 of the annual number of events con-
verges to λ as we increase the length of the simulation. In other words, the frequency20

distribution has an over-dispersion σ2/λ = 1. As it turns out, having an over-dispersion
exactly equal to 1 leads to timeline simulations that can be described as random and
unstructured. We seek to understand this, by considering an alternative and equally
valid way to generate Poisson timeline simulations.

Consider the following alternative manner to generate Poisson simulations. Suppose25

we have an event table consisting of only one event with average annual rate λ. We
would like to generate a Ψ years simulation of the occurrence of this event in time. One
way of doing this is to is to assume the event occurs Ψλ times (hereafter rounded to the
nearest integer) over the Ψ years (a good approximation if Ψ is large). Then, randomly
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assign each of the Ψλ event occurrences to a year from 1, . . . ,Ψ, independently of
one another (each year has probability of 1/Ψ of being picked, we are therefore using
a uniform distribution on the years, with replacement). For Ψ→∞, this prescription is
equivalent to the simulation strategy described in the previous paragraph. The key point
is that each event is randomly assigned to each year in the simulation. The occurrence5

of one event has no bearing whatsoever on another event. There is therefore no “clus-
tering” in that years with large numbers of events only happen by chance. The same
argument can be made for an event set consisting of M events. Poisson simulations
have no imposed structure on the timeline implying a lack of clustering.

In this paper, we define clustered processes as those which are over-dispersive10

so that σ2/λ > 1, and those which exhibit cross event correlation (which we define
in due course). As we will see in this paper, large-scale European windstorms are
over-dispersive. As well, European windstorm activity appears to be strongly associ-
ated with the north Atlantic oscillation. If we look to years 1990 and 1999 in the recent
past (Mailier et al., 2006), it appears as though European windstorms tend to happen15

in clusters of particularly intense events, at least suggesting event occurrences within
particular years are correlated. The mathematical challenge is therefore to develop
a framework that allows us to generate over-dispersive simulations which also exhibit
cross-event correlation.

2.2 Super-Clusters methodology20

Our proposed framework for modeling clustering stems from physical principles. The
idea is that there exist certain physical drivers which in some years favour the occur-
rence of certain types of events over others. For example, for European windstorms, if
over the course of one year the atmosphere tends to be in a strong positive phase of the
North Atlantic Oscillation, the large-scale atmospheric conditions might tend to favour25

intense windstorms largely propagating in the northeast direction. We assume that the
events in our event table can be split into K unique groups of events. Some of these
event groups are assumed to be strongly modulated by the physical environment in
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which the events are embedded. This modulation, as it turns out, is the source of over-
dispersion. In this formulation, each of the events in the M event event-table belong to
one unique group among the K . We call these groups “Super-Clusters”. To model the
occurrence of clustering in the Super-Clusters, we will need to use frequency distri-
butions which exhibit over-dispersion and are therefore not Poisson. We also assume5

that the K Super-Clusters behave independently from one another (although this is
not strictly necessary). We focus on the independent case for simplicity. Within each
Super-Cluster, the event occurrences are prescribed to be correlated, which is one of
the drivers of the over-dispersion that we seek to model.

To split our event set into the K Super-Clusters, we assume the existence of an10

archive of historical events. The historical events are not part of the event table we use
for timeline simulation, but are simply used to help use define the composition of the
Super-Clusters. A typical archive of historical events for applications we have in mind
consists of order 50 years of events. Given an archive of historical events, the idea is to
proceed as follows: (1) apply a statistical clustering algorithm to an archive of historical15

events, this defines the properties of the K Super-Clusters. (2) Use regression analysis
to determine the physical drivers of the different Super-Clusters defined on the histor-
ical set, to check for physical significance. (3) Check that the K Super-Clusters are
behaving independently (this can be relaxed, but in any case it is important to be able
to quantify the correlation across Super-Clusters). (4) “Match” the M events in the event20

table to the K Super-Clusters defined on the historical data using a nearest neighbour
algorithm. (5) Determine the target over-dispersion of each of the K Super-Clusters
from the historical data (with errors estimates). (6) Apply a mathematical modelling
framework (such as the Poisson-Mixtures formulation described in Sect. 2.3) to gener-
ate simulations that are in the suggested range of over-dispersions from the historical25

data, and also exhibit an appropriate degree of within Super-Cluster correlation.
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2.3 Poisson-Mixtures formulation

We now describe what we call a Poisson-Mixtures formulation of the Super-Cluster
methodology. The Poisson-Mixtures formulation allows us to model over-dispersive
Super-Clusters which have cross-event correlation, as required by the Super-Clusters
methodology. As before, we assume our stochastic event set is comprised of a to-5

tal of i = 1, . . . ,M unique events with average annual rates λi . Suppose we have di-
vided this stochastic event set into k = 1, . . . ,K Super-Clusters. The kth Super-Cluster
has Mk events where each event belongs to one of the Super-Clusters and therefore∑K

k=1Mk =M. Given our assumption that the Super-Clusters are mutually independent,
it suffices to understand the mathematical behaviour of one of the Super-Clusters be-10

fore putting all the independent Super-Clusters together in one timeline simulation.
We now focus our attention on the kth Super-Cluster comprised of j = 1, . . . ,Mk

events. The important mathematical results underlying the Poisson-mixtures formula-
tion are drawn from Wang (1998). In what follows, we cast the Poisson-mixtures formu-
lation into our context, pointing out important aspects along the way.15

Let the discrete random variables N1, . . . ,NMk
represent the annual number of occur-

rences of events j = 1, . . . ,Mk . We want to generate a timeline simulation. For a Pois-
son assumption, we would proceed as described in Sect. 2.1. In the Poisson-mixtures
formulation, however, we “modulate” the event rates by random draws from a gamma
distribution, before simulating any particular year of events. This modulation leads to20

a simulation with over-dispersion greater than 1, and correlation in the annual occur-
rences of events within the Super-Cluster. Let Θk be a random variable drawn from
the univariate gamma distribution g(θk |αk ,τk) where the shape parameter is αk and
the scale parameter is τk . In this notation the underscore k represents the kth Super-
Cluster. Suppose we are generating a simulation for year 1. The total number of events25

n1 to select from the Super-Cluster is,

n1|Θk = θk,1 ∼ Poisson(θk,1λk) (1)
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where λk is the total rate for Super-Cluster k, and θk,1 is the particular realization from
the gamma distribution for year 1. To determine which events to pick for year 1, we
draw, with replacement, events from the Super-Cluster k where the probability of any
event being selected is proportional to its rate. This procedure is then repeated for
all subsequent years in the simulation. The gamma distribution acts as a “modulator”.5

This modulator of the rates is intended to account for large-scale physical drivers that
increase/decrease the annual rate of the particular types of storms in Super-Cluster
k. The idea is that historical data will be our guide in determining the amplitude (vari-
ance) of this modulator. In this construction, our intention is to not change the mean
number of occurrences of all the j = 1, . . . ,Mk events. This can be done by ensuring10

that the E [Θk ] = 1. Now, for the gamma distribution, we know that E [Θk ] = αkτk . We
choose αk = 1/τk and hence E [Θk ] = 1. Since var[Θk ] = αkτ

2
k , this choice implies that

var[Θk ] = τk . So, the modulator has mean 1 and variance equal to the scale parameter.
Notice that in each year of simulation, each member of the Super-Cluster is modulated
by the same realization of Θk .15

In Appendix A we provide the expression for the probability generating function of
the frequency distribution consistent with the Poisson-mixtures framework as applied
in our context, using the results in Wang (1998). The ability to formulate the probability
generating function allows us the capability of computing many important loss statistics
(explored Sects. 3 and 4) analytically. This is convenient from an implementation point20

of view.
As discussed in Wang (1998), the Poisson-mixtures probability generating function

implies a multivariate Negative Binomial distribution with mean annual rate of λk =∑Mk
j=1λj and variance λk + τkλ

2
k , which implies that the over-dispersion is 1+ τλk for

the Super-Cluster as a whole. The over-dispersion is linear in both the variance of the25

modulation and the overall rate for the Super-Cluster. Finally, as discussed in Wang
(1998), the marginal distributions are Negative Binomial with mean λj and variance

λj + τkλ
2
j . Crucially, it can also be shown that the covariance coefficient for the annual
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occurrences of any two events in the Super-Cluster is equal to cov[Na,Nb]
E [Na]E [Na] = var[Θk ] = τk

(where Na and Nb are the random variables associated with any two events a and b
in the set of j = 1, . . . ,Mk events). The covariance coefficient is identical for all pairs
of events in our Super-Cluster, and is equal to the variance of the modulating gamma
distribution.5

The above formulation is applied to each of the K Super-Clusters where each Super-
Cluster has a unique magnitude of modulation given by the scale parameter of the
gamma distribution τ. In other words, the model is fully specified by assigning unique
τ values for all K Super-Clusters. We now describe what we believe to be the 6 key
features/considerations of this formulation:10

1. The K Super-Clusters are independent of one another. From an algorith-
mic/computational point of view this is clearly convenient because we can gener-
ate simulations from the different Super-Clusters in parallel. More importantly, this
puts some restrictions on how we group the full event set into K Super-Clusters.
To apply this formulation, for any particular hazard of interest, one needs to be15

able to demonstrate that the K Super-Clusters are indeed behaving independently
to a reasonable degree. Although outside the scope of this paper, we can in prin-
ciple use copula methods to rank correlate the K Super-Clusters through their
modulating gamma distributions.

2. Each of the k = 1, . . . ,K Super-Clusters has an over-dispersion of 1+ τkλk where20

λk and τk are the overall annual rate and gamma distribution variance for Super-
Cluster k. Crucially, the over-dispersion can be “calibrated” by choosing a τk de-
signed to mimic results from our historical catalogue, if so desired.

3. Within a Super-Cluster, the covariance coefficient is equal to τk . As shown above,
the modulation of the rates within any particular Super-Cluster is driven by one25

single parameter. This yields the covariance coefficient which is equal to the vari-
ance of the modulating distribution. In a simulation context, this modulation can
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be designed to significantly increase the probability of getting many events from
any given Super-Cluster in the same simulation year, and conversely can signifi-
cantly increase the probability of getting few events from any given Super-Cluster
in the same year. Our approach is fundamentally different than simply putting
an over-dispersive Negative Binomial distribution on each event and treating the5

events independently. The Poisson-mixtures formulation is designed to create the
“big years” where many events occur in the same year, having dramatic impacts
on catastrophe related exposures. Attempts to create “big years” in simulations
where the events within a Super-Cluster are treated as independent are very dif-
ficult to make work in practice (in our experience). The ability of the Poisson-10

mixtures approach to create years with many significant events is one of the key
reasons we have chosen this formulation.

4. We are able to write down the analytical expression for the joint probability gen-
erating function (Appendix A), convenient for analytical computations of key loss
statistics.15

5. The overall approach is “top down”. By this we mean that the approach to mod-
elling clustering is not derived from first principles physical arguments. Our frame-
work is a parameterization of clustering. Our approach has the clear advantage of
tunability but comes at the cost, perhaps, of less physical realism. For many phe-
nomena of interest, such as European windstorms, it is unclear whether a bottom20

up physically based numerical modelling approach would be useful, due to nu-
merical model biases. The more complex the phenomena of interest, the more
difficult it becomes to take a fully bottom up approach, and as a result having
a well understood top down approach is useful.

6. The Poisson-Mixtures formulation provides even more flexibility/tunability in the25

following sense: Each of the K Super-Clusters can be divided into a Poisson
and over-dispersive part if one chooses to do so. Events which tend to be over-
dispersive can be included in the over-dispersive subset of each Super-Cluster.
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In European windstorm, our experience suggests that the over-dispersive events
tend to be the most severe. Physical thresholds can be used to achieve an ap-
propriate split between the Poisson and over-dispersive subset of each of the k
Super-Clusters. By doing so, the over-dispersion of the kth Super-Cluster be-

comes 1+ τk
λ′k

2

λk
where λ′k is the sum of the rates of the events in the over-5

dispersive subset (and clearly λ′k < λk). This subsetting lowers the overall over-
dispersion of the kth Super-Cluster. By adding a threshold to split Super-Clusters
in to Poisson and Over-Dispersive parts, the simulations may be more physically
realistic, and the additional parameter affords us extra flexibility in the calibration
process.10

3 Application of the Super-Clusters methodology to European windstorm data

In this Section we start by examining whether or not clustering exists in a data set based
on 135 of the most intense windstorms to occur in Europe over the period from 1972–
2010. As we will show, the data are strongly clustered. We then develop a model of
these data by applying the Poisson-Mixtures formulation of the Super-Cluster method-15

ology. Our example not only provides a good demonstration of the importance of clus-
tering, but in using a simple example, we are able to clearly elucidate the steps in
applying the Poisson-Mixtures formulation for practitioners interested in more complex
applications. We begin by describing the data set.

We use a data set of European windstorm reconstructions discussed extensively in20

Bonnazi et al. (2012). The reconstructions consist of 135 of the most intense wind-
storms to occur in Europe over the period from 1972–2010. Using 3 s peak gust data
collected from 1972–2010 covering 15 European countries, a set of 135 event recon-
structions on a high resolution variable resolution grid was created. The event recon-
structions consist of maps of local maximum gusts experienced during the passage of25

the 135 synoptic events. The high resolution reconstructions were then aggregated to
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the CRESTA level for Germany, UK, France and Denmark (our chosen domain of in-
terest for demonstration purposes). For each storm, a single number called the storm
severity index was produced by computing the following for each storm,

SSI =

∑
(vi − v0)3Ai∑

Ai

1/3

(2)
5

where the sum takes place over all affected CRESTA zones for a particular storm, and
vi is the wind gust at CRESTA cell i and Ai is the area of the i th CRESTA cell. We
use a threshold of v0 set to 25m s−1. The summation takes place over all CRESTA
cells in the superset of Germany, UK, France and Denmark. The storm severity index
correlates well to aggregated damage/loss due to the passage of the storms, and is10

therefore particularly appropriate for the risk modelling applications we have in mind.
The set of 135 storms we consider contains famous European windstorm events such
as 87J, Daria, Vivian, Anatol, Lothar, Martin and Kyrill. For details related to the ob-
servational data set, the storm reconstruction method, and how the 135 most severe
storms were selected, the reader is referred to Bonazzi et al. (2012).15

We now examine the properties of the data relevant to clustering. In Fig. 2, the
triangles denote the annual storm counts (derived from the set of 135 storms) but nor-
malized by removal of the mean and division by the sample standard deviation. The
red line represents the decadal rolling mean of the storm counts. From these data, it
is clear that the 1990s represented a period of relatively high activity. The black dots20

denote the normalized values for the North Atlantic Oscillation index, and the black line
represents the decadal rolling mean for the NAO index. Note that the NAO index is
computed for one particular year by taking the mean of the monthly NAO indeces for
months January–March and September–December, so our index represents the win-
ter/baroclinic portion of the year. Figure 2 suggests an association between historical25

event count and the NAO index.
In Fig. 3, we plot the normalized NAO index vs. the annual normalized storm fre-

quency consisting of 39 data points. Higher NAO indeces are associated with higher
5260

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5247/2014/nhessd-2-5247-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5247/2014/nhessd-2-5247-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 5247–5285, 2014

Framework for
modeling clustering

S. Khare et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

frequencies. This association is interesting at the very least, and is consistent with pos-
itive NAO states being characterized by a strong jet stream and in turn influencing the
propagation and development of storms impacting our domain of interest (Germany,
UK, France and Denmark). In Fig. 3, we plot the normalized NAO index vs. the total
annual storm severity index (summing over all events in a given year). In Fig. 4 we see5

an association between stronger NAO states, and annual aggregated storm severity.
Based on the evidence in Figs. 2–4, it appears to be the case that the state of the
NAO influences and modulates to some degree the frequency and severity of wind-
storms impacting our region of interest. We then make the conjecture that our dataset
should exhibit clustering. From the time series of storm counts derived from our 13510

storms, we obtain a sample over-dispersion of 1.39, bolstering the notion that our data
is clustered.

We now examine the data using a statistic that is very commonly applied in catastro-
phe risk management. The statistic is the exceedance probability of the annual maxi-
mum event (insured) loss on a portfolio of risk. We call this the Occurrence Exceedance15

Probability (OEP). For the purposes of this paper, storm severity index (SSI) is anal-
ogous to loss. We are therefore interested in looking at the exceedance probability of
the annual maximum SSI. Given our time series of maximum storm severities from
1972–2010 (years with no events would be assigned zero for the storm severity), we
can plot empirical exceedance probability curve which is depicted by the green line on20

the upper left panel of Fig. 5. Note that on the vertical axis of Fig. 5, we have return
period RP, and this is defined as 1 divided by the exceedance probability. The green
line on the upper panel of Fig. 5, joins up 39 data points. To determine the exceedance
probability associated with the largest SSI value, we take the cumulative probability as
m−1/3
n+1/3

where m = 39 (the order statistic, the largest SSI will have m = 39) and n = 3925

equal to the number of years. This is the plotting position approximately equal to the
median of the beta distribution which describes the probability distribution of the cu-
mulative probabilities associated with the largest order statistic (David and Nagaraja,
2003). Hereafter, all other exceedance probability curves in this paper are plotted in
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the same manner. The exceedance probability at the maximum SSI value over the

39 years is therefore 1− m−1/3
n+1/3

. The same scheme is used to compute the exceedance

probability of the other 38 maximum annual SSI values. For the exceedance probability
for the largest SSI value, the grey bounds depict the 5/95 percentiles derived from the
beta distribution, representing the statistical sampling uncertainty associated with this5

exceedance probability (clearly large for the m = 39 order statistic).
We now examine whether or not the empirical OEP curve exhibits clustering using

a simple test. The test involves building a model of the data utilizing a Poisson assump-
tion. We then generate simulations from this Poisson model and compare the results to
the data. To build the Poisson model of the data we start by taking the 135 values of his-10

torical SSI and fit a generalized pareto distribution, using the smallest SSI value as the
threshold. This choice of threshold is justified in that the 135 storms is a representation
of high intensity events. This generalized pareto distribution of the data represents the
distribution of SSI given that there is an event. We call this the conditional SSI distribu-
tion. We then assume that the annual rate of storm occurrence is λ = 135/39 (simply15

the number of historical events divided by the number of years in the historical data).
We then generate a timeline simulation using a Poisson assumption (as described in
Sect. 2.1). We generated a 105 year timeline simulation of SSI under a Poisson as-
sumption. The resulting OEP curve is depicted by blue line in the upper left panel of
Fig. 5. Particularly for short return periods around 10 years, the Poisson model OEP20

curve is much higher than the empirical OEP. Therefore it appears as though a Pois-
son assumption is inadequate. The next step was to build a clustered version of the
model to see whether we get a model that generates results that are more consistent
with the historical data. We applied the Super-Cluster method using a Poisson mixtures
formulation. In line with the notion that more intense storms are clustered, we treat all25

simulated events (from the generalized pareto distribution) below SSI 2.5 as Poisson,
and all events greater than or equal to 2.5 in SSI as clustered with a gamma variance
of 1.5. The first measure of how well this models the data is the over-dispersion we
which found to be approximately 1.39 in agreement with the historical data. From this
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clustered version of the model, we also generated 105 years of timeline simulation.
The resultant OEP curve from these data are depicted by the red line in the upper left
panel of Fig. 5. Particularly for the return periods between 2 and 10, the red line OEP
curve generated from the clustered model is more in line with the empirical OEP. The
clustered version of the OEP curve is below the OEP curve derived from the Poisson5

version of the model. As well, for very large SSI thresholds, the clustered and Poisson
OEP curves appear to converge towards one another. These two properties related to
the clustered and Poisson OEP curves are shown informally in Appendix B. By con-
struction, our formulation of clustering has no impact on the mean annual rate, and
therefore has no impact on the exceedance frequency beyond any SSI threshold as10

shown in Appendix C.
Oftentimes in risk modelling applications, we are also interested in statistics associ-

ated with the distribution of the 2nd, 3rd and 4th annual maximums. In the upper right
panel of Fig. 5, the green line depicts the empirical exceedance probability curve for the
2nd annual maximum (which we call the OEP2). This curve is obtained by taking the15

2nd annual maximum SSI value from each year of our time series of 39 years (years
with no events are assigned zero SSI). The upper right panel of Fig. 5 also depicts
the OEP2 curves from the Poisson (blue) and clustered models (red). For larger SSI
thresholds (greater than 3), the clustered OEP2 is larger than the Poisson OEP2. In the
lower left/right panels of Fig. 5, we depict analogous results for the OEP3 (3rd annual20

maximum) and OEP4 (4th annual maximum). As for the OEP2, the OEP3 and OEP4
are higher for the clustered version of the model for large SSI thresholds. The implica-
tion is that the clustered model generates higher probability of getting years with larger
numbers of intense SSI events, compared to the Poisson model. We would argue that
across all 4 panels of Fig. 5, the clustered version of the model is much more consis-25

tent with the empirically derived exceedance probability curves. For example, the lower
left and right panels demonstrate that the Poisson model is not even consistent with
the considerable uncertainty band around the empirical curves.
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The clustered version of the model generates timeline simulations that yield much
higher probabilities of getting multiple large events. For example, in the Poisson model,
the return period associated with getting 3 or more events larger than SSI equal to 4
is approximately 1000 years. The clustered version of the model has a return period
of approximately 200 years. Looking at our historical data, we have for 1999 3 major5

historical storms Anatol, Martin and Lothar with SSI values 2.70, 6.15 and 3.77, re-
spectively. In 1990 storms Daria, Vivian, Herta and Wiebke have SSI values of 5.53,
5.91, 4.17 and 4.14. If we take the 3 most intense storms from 1990 for example, the
return period of 1990 suggested by the lower left panel of Fig. 5 is well over 1000 years
for the Poisson model. This seems unreasonable given that this year exists in the his-10

torical data. The return period suggested by the clustered version of the model is order
200 years. While we have not calibrated the model specifically for the return periods
of 1990 and 1999 two things are clear: (a) the Poisson frequency assumption fails to
provide reasonable estimates of the return periods of key historical years and (b) the
Poisson-Mixtures framework gives us the flexibility to design clustered versions of the15

model that provide a more accurate and reasonable description of the data. Finally,
Fig. 5 demonstrates the high degree of uncertainty associated with exceedance prob-
ability statistics derived empirically from historical data. Faced with this degree of un-
certainty, it is clear that there is no universal principle that we can suggest for choosing
the degree of clustering to put into the model. The practitioner needs to determine the20

degree of clustering based on looking at a variety of statistics that are pertinent to their
risk management application of interest.

4 Implications of clustering for catastrophe excess of loss contract pricing

In this Section, we develop new insights into the impact of clustering on so-called catas-
trophe excess of loss contracts (hereafter catXL contracts), a common type of contract25

in the insurance industry that is used to transfer risk from a primary insurance company
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to a re-insurance company. Our focus is on understanding the change in catXL contract
prices when switching from a Poisson to clustered timeline simulation.

We begin by defining the type of catXL contract that we study in this paper. To limit
the scope of our work, we focus on aggregate limit contracts due to their common
application. We begin by re-visiting the timeline simulation concept in Fig. 1. We sup-5

pose that the timeline simulation represents simulations of loss due to European wind-
storms to a primary insurance company portfolio (consisting of an amalgamation of
many home-owner policies). We suppose that for the level of income derived from pre-
mium payments from the home-owner policies, the level of risk is too large. To reduce
the risk of having to pay out large event losses, primary insurance companies purchase10

catXL re-insurance from re-insurance companies. The purchase price can be modelled
using output from the timeline simulation.

To develop a model for the price, we first define the attachment and exhaustion point
A and E respectively. In Fig. 1, A is the loss level depicted by the red dotted line, and E
is depicted by the blue dotted line. In each year of simulation, we first compute the loss15

of each event to the “layer” which for any event with loss l ≥ A is equal to min(E−A, l−A)
and is otherwise 0. Suppose in year j of the timeline simulation we have Nj events. The

annual loss is equal to
∑Nj

i=1 min(E −A, li ,j −A) where li ,j is the i th event loss in year
j (events with li ,j < A are excluded from the sum). We now define what is called the
aggregate limit, (E−A)(r+1), where r is the number of re-instatements. The aggregate20

limit is a cap on the annual aggregate loss. For zero re-instatements, the aggregate
limit is simply E −A, and for infinite re-instatements it is unbounded. Larger numbers of
re-instatements means that more losses can be potentially passed onto the re-insurer.
However, this comes at the cost of a higher contract purchase price for the primary
insurer as we will see.25

We define the random variable AL|r which is equal to the annual aggregate loss
capped at the aggregate limit (indicated by the condtional notation on the number
of re-instatements r). For simplicity, we define the catXL contract price using the
first two moments of the distribution of AL|r . We take the price as the expectation
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E (AL|r) plus some function of the standard deviation of the annual aggregate loss
or f (

√
E (AL|r −E (AL|r))2). To understand the impact of clustering on catXL contract

pricing, we therefore seek to understand the impact on the expectation E (AL|r) and
standard deviation

√
E (AL|r −E (AL|r))2.

In what follows we discuss two extreme cases which are relatively easy to charac-5

terize. We begin by looking at the case of infinite re-instatements (r =∞), and then
move onto the more complicated case of zero re-instatements (r = 0). Understanding
these two extreme cases is helpful in understanding the more difficult case of finite
re-instatements, this point is discussed briefly in Sect. 5.

4.1 Infinite re-instatements10

In the case of infinite re-instatements, the aggregate limit is unbounded, and the ran-

dom variable we consider is the uncapped annual aggregate loss
∑Nj

i=1 min(E−A, li ,j−A)
(again events for which li ,j < A are excluded from the sum). To begin to understand
the infinite re-instatement case, we first look at results from numerical simulation. We
generated two different timeline simulations of 105 years for the Poisson and clustered15

models (where SSI is the analogous quantity to loss) exactly as described in Sect. 3.
To determine the attachment point A and exhaustion point E thresholds, we first plotted
the OEP curve from the Poisson simulation. Results shown in Figs. 6 and 7 are for two
different layer defintions. In Fig. 6 the attachment point is the SSI threshold consistent
with the 2 year return period on the Poisson OEP, and the exhaustion point is taken as20

the SSI threshold consistent with the 20 year return period. For the results shown in
Fig. 6, the attachment and exhaustion points are drawn from the 20 and 50 year return
periods respectively.

We now describe the results in Fig. 6 in detail. In the upper left panel of Fig. 6,
we plot the OEP curve generated from our Poisson and clustered timeline simulations25

(again, as discussed in Sect. 3). On the upper left panel of Fig. 6, the vertical lines
denote the SSI thresholds for the attachment point A which is approximately 2.8 and
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the exhaustion point E which is approximately 5.2. In the upper right panel of Fig. 6,
we plot the mean loss (again taking SSI as our proxy for loss), for both the Poisson and
clustered case, as a function of the number of re-instatements. When the number of
re-instatements is 106 (effectively infinite in this context), the mean loss for the Poisson
and clustered cases are equal to each other within numerical precision. In the lower left5

panel of Fig. 6, we plot the standard deviation of the loss to the layer as a function of
the number of re-instatements. For 106 re-instatements, the standard deviation of the
annual aggregate loss to layer is much higher than the Poisson. The results in Fig. 7,
for 106 re-instatements are qualitatively identical.

So why does clustering impact the standard deviation of the annual aggregate loss,10

but not the mean loss? At least intuitively, these results seem to make sense. If our
natural hazard peril is more volatile due to clustering, perhaps it is not surprising that
clustering increases the standard deviation of the annual aggregate loss, especially in
the case of infinite re-instatements where there is no cap on the annual aggregate loss,
and losses due to all events are counted. Furthermore, clustering is not changing the15

number of occurrences of any particular event over a long timeline simulation, so in the
case where there is no cap on the annual aggregate loss, the impact on the mean loss
makes sense.

We now seek to understand exactly why clustering has no effect on the mean loss,
while at the same time driving up the standard deviation of the uncapped annual ag-20

gregate loss to layer. We again imagine the scenario where we start with an event table
and construct a timeline simulation for a Poisson and clustered model (using Poisson-
Mixtures). We first note that the inclusion of clustering has no impact on the mean
annual rate of occurrence of any particular event. This implies that the distribution of
loss conditional on an event occurring is unchanged by the inclusion of clustering. As25

discussed in Appendix C, for any given loss threshold, the frequency of exceedance
is by construction not impacted by the inclusion of clustering (at least for the Poisson-
Mixtures formulation of the clustering model). As shown in Appendix D, the mean loss
to the layer is given by the product of the event exceedance frequency evaluated at the
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attachment point, times the mean loss to layer for events that have losses beyond the
attachment point. These quantities are unaffected by the inclusion of clustering, there-
fore we can draw the conclusion that the mean loss to layer for infinite re-instatements
is the same for both the Poisson and clustered versions of the models.

We now address the question of why, in the infinite re-instatements case, the stan-5

dard deviation of the annual aggregate loss is increased when we include clustering
in our simulations. In any given year of simulation, the event losses can be sorted in
descending order. We can determine which event is the 1st maximum, 2nd maximum
and so on. In the infinite re-instatements case, as there is no cap on the annual ag-
gregate loss, the loss in any particular year of simulation is simply the sum of the 1st10

max, 2nd max, and so on. To proceed, we treat the 1st maximum, 2nd maximum and
so on as random variables. For a Poisson simulation, the 1st and 2nd maximum are
correlated. For example, for our 100 000 year simulation, the linear correlation between
the 1st and 2nd maximum is approximately 0.64. Although in Sect. 2 we highlighted
the random nature of Poisson simulations, when we look at the 1st and 2nd maximum,15

we impose a sorting of the events, a source of correlation. As well, for years with large
numbers of events, you essentially have more draws from the severity (SSI) distribu-
tion, increasing the likelihood of getting a 1st and 2nd maximum above their respective
means. Therefore, we can think of the 1st, 2nd and so on maxima as correlated random
variables for both the Poisson and clustered simulations.20

Viewing the 1st, 2nd and so on maxima as correlated random variables is helpful in
explaining the increased variability of the uncapped annual aggregate loss to layer in
the clustered case. Consider the expression for the variance of the sum of correlated
random variables. In this context, the sum is over all the event losses to the layer in any
particular year. As there is no cap on the annual aggregate loss to the layer, we need25

to add up losses from all events.
Looking to the expression for the variance of the sum of correlated random vari-

ables, the variance in the clustered case will be higher if the linear correlation between
the random variables is higher, in addition to the variances of the 1st, 2nd and so on

5268

http://www.nat-hazards-earth-syst-sci-discuss.net
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5247/2014/nhessd-2-5247-2014-print.pdf
http://www.nat-hazards-earth-syst-sci-discuss.net/2/5247/2014/nhessd-2-5247-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


NHESSD
2, 5247–5285, 2014

Framework for
modeling clustering

S. Khare et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

maximum themselves. Our numerical simulations reveal that the correlations in the
clustered case between maxima are indeed higher in the clustered case. For example,
in our clustered simulations, the linear correlation between the 1st and 2nd maximum
losses to the layer are 0.74 (compared to 0.64 for the Poisson case). We find quali-
tatively similar results for all other pairs of maxima in our simulations (we checked up5

to the 4th maxima). While the 1st, 2nd, 3rd and so on maxima variances are different
in the Poisson and Clustered cases, the changes are small relative to the increased
correlation due to the inclusion of clustering. Therefore, the source of increased stan-
dard deviation for the infinite re-instatements is the increased correlation imposed by
our clustering model on the 1st, 2nd and so on maximum losses to layer.10

4.2 Zero re-instatements

In the case of zero re-instatements, the cap on the annual aggregate loss to layer is E−
A. To compute the annual aggregate loss in any given year, we first add up all the losses
to layer for each event occurrence. We take the sum of event losses to layer as our
annual aggregate loss, but cap it at E −A. We now discuss the results in Figs. 6 and 715

based on our numerical experiments. The upper right panels of Figs. 6 and 7 reveal that
the mean loss is lower in the clustered case for zero re-instatements. The imposition of
the cap on the annual aggregate loss has changed the situation considerably from the
infinite re-instatement case where the mean losses are theoretically equivalent.

Why then is the mean loss lower for the clustered model? Suppose, for the sake20

of argument, that the 1st maximum in each year of simulation explains nearly all the
annual aggregate loss. In this case, we can gain insight by just looking at the distribution
of the maximum annual loss. In this case, the mean loss would be well approximated
by the integral of the OEP curve from the attachment point A to the exhaustion point E
(Klugman et al., 2012). As shown in Appendix B, clustering leads to an OEP curve that25

is less than or equal to the OEP curve generated from the Poisson model. When we
add clustering to our simulations, the effect is to create more simulation years with large
numbers of events. This has the effect of lowering the probabilities of the 1st maximum
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exceeding a given threshold because clustering piles in events into the same years
(compared to the Poisson simulation). In the case of zero re-instatements, we place
a cap on the annual aggregate loss, in turn giving more importance to the 1st maximum,
in turn lowering the mean loss in the clustered case. In the lower right panels of Figs. 6
and 7, we plot the percentage contribution of the annual maximum loss to the zero5

re-instatement mean and standard deviation. In both cases, the large majority of the
mean loss is due to the contribution from the first maximum.

With regards to the standard deviation, suppose again that the 1st maximum in each
year of simulation explains nearly all the annual aggregate loss (capped at E−A). In this
case we can approximate the variance using integration of the OEP curve (Klugman10

et al., 2012). A lower OEP curve then implies lower annual aggregate loss variability.
If we look to the numerical results in Figs. 6 and 7, we find the the following: in Fig. 6
we find a higher annual aggregate loss to layer standard deviation for the clustered
simulations with zero re-instatements. In Fig. 7 we find a lower annual aggregate loss
to layer standard deviation for the clustered simulations with zero re-instatements. The15

results in Fig. 7 are more in line with the reasoning based on the 1st maximum loss
being the dominant contributor. Comparing the lower right panels of Figs. 6 and 7, we
find that the maximum loss explains the vast majority of the zero re-instatement loss in
the case of the catXL defined on the higher return period layer in Fig. 7.

Based on these results, it is difficult to draw a very general conclusion. However,20

our results do demonstrate that in the case of zero re-instatements, it is likely that the
annual maximum loss explains the majority of the loss to layer. As a result, one can
use integral of the OEP to infer changes to catXL contract prices when moving from
a Poisson to clustered model.

5 Summary and conclusions25

This paper addresses the problem of how to model clustering in the context of natural
hazard risk modelling. Natural hazard risk models are used in the re/insurance industry
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for various functions such as pricing and efficient allocation of capital. Many natural
phenomenon of interest in this context, such as large-scale European windstorms,
exhibit a high degree of clustering. In the case of European windstorms, clustered
behaviour arises due to the large-scale atmospheric oscillations which can dictate in
any given year the frequency of very severe and damaging European windstorms.5

In Sect. 2 of this paper we provide a novel framework called the Super-Clusters
methodology which allows one to incorporate clustering into a natural hazard risk
model in a way that enables one to model over-dispersive processes (a characteris-
tic of clustered processes). A very special property of the Super-Clusters methodology
is that it allows one to model the correlation between events. The methodology has its10

roots in physical arguments. The first step in applying the Super-Clusters methodology
is to use a clustering algorithm (which can be defined on very general state spaces) to
identify groups of historical events which can be shown to be associated with a unique
set of large-scale oscillations which dictate the frequency and severity of the events.
For example, in Europe, the state of the NAO is associated with variations in the fre-15

quency and severity of damaging windstorms. Once the historical data is grouped into
a set of Super-Clusters, the Super-Cluster definitions can be used to group or bin the
set of events which comprise the natural hazard risk model.

In Sect. 2 of the paper we also show a particular mathematical formulation of the
Super-Clusters methodology. This mathematical formulation is called Poisson-Mixtures20

approach. The Poisson-Mixtures approach has several advantages: (1) a high degree
of tunability so that one can design clustered simulations that exhibit similar behaviour
seen in historical data. (2) Lends itself to analytical formulations of the probability gen-
erating function which can be advantageous for natural hazard risk model loss calcula-
tions. (3) Allows one the ability to model correlation between events within any partic-25

ular Super-Cluster. Point (3) is crucial, as it has been our experience that formulations
which treat events as independent but over-dispersive are oftentimes not sufficient for
generating risk models which have a sufficient degree of clustering.
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In Sect. 3, we provide a clear demonstration of the application of the Super-Clusters
methodology to historical data. We use a set of 135 historical windfield reconstructions.
Each historical windfield reconstruction is summarized by a storm severity index which
is a quantity that is related to the insured loss. We look into the statistics of the historical
data and find the data to be strongly clustered. We then develop a simple simulation5

model making use of a Poisson frequency assumption. We show that the Poisson fre-
quency based model does not sufficiently represent the degree of clustering observed
in the historical data. We then apply the Super-Clusters methodology, implementing
and tuning a model using the Poisson-Mixtures formulation. We find that the clustered
version of the model provides a much better representation of the historical data. In par-10

ticular, the clustered model generates statistics which assign much more reasonable
return periods to years with multiple intense windstorms. The simple demonstration in
Sect. 3 not only demonstrates the importance of clustering in historical European wind-
storm data, it provides an example upon which risk modelling practitioners can build
upon to apply the framework to more complex models.15

In Sect. 4, we examine the impact that clustered simulations have on modelled prices
of catXL contracts, used by insurance companies to transfer risk to reinsurance com-
panies. We examine aggregate limit catXL contracts which represent one of the most
important and common risk transfer contracts in the insurance industry. We focus our
attention on two limits: (1) the limit of an infinite number of re-instatements and (2) zero20

re-instatement limit. For the infinite re-instatement limit, we find that the addition of clus-
tering has no impact on the modelled mean loss, but leads to an appreciable increase
in the contract standard deviation. Clustering has no impact on the overall frequency of
event occurrences, nor does it impact the conditional event loss distributions, leading
to no impact on the mean loss for infinite numbers of re-instatements as shown in the25

paper. Clustering does, however, lead to an increase in the standard deviation of the
loss for the infinite re-instatement case. The explanation for this is that the inclusion
of clustering increase drastically the correlation between 1st, 2nd and so on maximum
in the timeline simulation, driving a higher standard deviation. For small numbers of
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re-instatements, and in particular zero re-instatements, we find that in cases where the
maximum annual loss represents the vast majority of loss to the catXL contract layers,
one can understand the impact that clustering has on the mean and standard devia-
tion by understanding the impact that clustering has on the occurrence exceedance
probability curve. The more difficult case to understand is the case where we have5

an intermediate number of re-instatements. The two extreme cases examined in this
paper is a first step towards developing such an understanding.

Finally, we note that we anticipate that in the future, non-Poisson/clustered natural
hazard catastrophe risk models will be more commonly used to quantify risk, and some
of the understanding we have developed in this paper may be useful in that wider10

context.

Appendix A: Probability generating function for the Poisson-mixtures
formulation

By definition, the probability generating function conditional on one particular Θ= θ is
given by,15

PN1,...,NMk
|Θ

(
z1, . . . ,zMk

)
= E

[
zN1

1 , . . . ,z
NMk
Mk

|Θ= θ
]

(A1)

for Super-Cluster k. The expectation is over the joint frequency distribution for the
random variables N1, . . . ,NMk

. To develop the probability generating function for the
Poisson-mixtures framework frequency distribution, we need to integrate over the mod-20

ulating gamma distribution (g(θ|1/τk ,τk)) as follows,

PN1,...,NMk

(
z1, . . . ,zMk

)
=

∞∫
−∞

E
[
zN1

1 , . . . ,zNk
k |Θ= θ

]
g(θ|1/τk ,τk)dθ (A2)
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where τk is the variance of the gamma modulating distribution (Super-Cluster k). The
above expression can be shown to be,

PN1,...,NMk

(
z1, . . . ,zMk

)
=
[
1− τk

(
λ1(z1 −1)− . . .− λMk

(
zMk

−1
))]−1/τk

. (A3)

As noted in Wang (1998) this defines a multi-variate Negative Binomial distribution5

with mean annual rate of λk =
∑Mk

j=1λk,j and variance λk + τkλ
2
k . Further properties are

discussed in Sect. 2.2.

Appendix B: Impact of clustering on the OEP

Here we provide an informal demonstration of why the addition of clustering lowers
the occurrence exceedance probability compared to a Poisson model. For the sake of10

argument, we suppose our event table consists of one event with mean annual rate
of λ. Given that this event occurs, let the cumulative distribution of the loss be F (l ).
Suppose we generate a timeline simulation off our event table consisting of this one
event. We define the random variable MN = max(L1, . . . ,LN ), which is the maximum
loss in a year with N events. The cumulative distribution of the loss up to a given loss15

threshold l is,

FM (l ) = Pr(M ≤ l ) = p0 +p1F (l )+p2F (l )2 + . . . (B1)

where p0 is the annual probability of getting zero events, and so on. By definition, the
above expression is equal to the probability generating function of F (l ). For a Pois-20

son frequency assumption FM (l ) = e−λ(1−F (l )). For a Poisson-Mixtures implementation
where we preserve the mean annual rate of occurrence, the probability generating
function shown in Appendix A leads to the following expression for the cumulative prob-

ability of the maximum loss FM (l ) = (1− τλ(F (l )−1))−1/τ.
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The OEP for the Poisson case is given by 1 minus the cumulative probability, or just

1−e−λ(1−F (l )). The OEP for the clustered case is 1−(1−τλ(F (l )−1))−1/τ. To simplify, we
define C = 1−F (l ). The key to understanding the relativity of the Poisson and clustered
OEP is to look at the ratio of the Poisson OEP to the clustered OEP given by,

1−e−λC

1− (1+ τ)−1/τ
. (B2)5

As the loss threshold becomes large, C → 0, and the above ratio tends to 1. This
implies that the Poisson and clustered OEP converge to one another for large loss
thresholds. As well, the above ratio is less that one (not shown here) for all loss thresh-
olds (for positive values of τ), which is easily demonstrated numerically or by simple10

proof.

Appendix C: Impact of clustering on the EEF

Assume that we have an event set comprised of M events with mean annual rates of
λi where i = 1, . . . ,M. The distribution of loss (severity) associated with event i is p(li ).
Consider a simulation, using only the event i . We want to compute the average annual15

number of losses that exceed l ∗ which is called the event exceedance frequency. This is
by definition the mean annual rate of event i times the probability that the loss exceeds
l ∗ event that event i has occurred, given by,

EEFi (l
∗) = E (Ni )p (li > l ∗) . (C1)

20

For the entire event set, we take the sum over all events to get,

EEF(l ∗) =
M∑
i=1

E (Ni )p (li > l ∗) (C2)
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which can be re-written as,

EEF(l ∗) =
M∑
i=1

 ∞∑
ni=0

pnini

p (li > l ∗) (C3)

where pni is the annual probability of getting ni occurrences of event i . Note that while
clustering will change the pni values, the sum will not change, because by construction,5

we only consider the case where the expectation is not changed. The inclusion of
clustering in our case does not change the event exceedance frequency.

Appendix D: catXL mean loss infinite re-instatements

We consider a catXL contract with an attachment point E and exhaustion point A (as
defined in Sect. 4). We consider an aggregate limit AL = (E −A)(1+ r) where r is the10

number of re-instatements. We first consider the limit as r →∞. Our event set is com-
prised of i = 1, . . . ,M events. Assume that each event has an event loss distribution
p(li ). First consider the event i . Let Sni represent a random variable representing the
sum of losses due to ni occurrences of event i . Let pni represent the annual probability
of getting ni occurrences of event i in a year. Let E (Sni ) be the expected loss to the15

catXL layer due to ni occurrences of event i . The expected loss due to ni occurrences
of event i is simply E (Sni ) = ni

∫E
A (1−p(li < l ))dl , ni times the integral of 1 minus the

cumulative probability for the loss of event i . Then, by definition, the expected loss due
to event i , is

∞∑
ni=0

pnini

E∫
A

(1−p(li < l ))dl = λi

E∫
A

(1−p(li < l ))dl (D1)20
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where λi is the expected number of annual occurrences of event i . The above is com-
pletely general in that pni need not be Poisson. Now, the mean annual loss is simply,

AAL =
M∑
i=1

λi

E∫
A

(1−p(li < l ))dl . (D2)

Dividing both sides above by λtot =
∑M

i=1λi gives5

AAL
λtot

=

∑M
i=1λi

∫E
A (1−p(li < l ))dl

λtot
=

E∫
A

CEP(l )dl (D3)

where CEP is the conditional event exceedance probability by definition. Hence, we
see that the mean annual loss can be written as λtot

∫E
A CEP(l )dl . This insight is useful

for a number of reasons. Suppose we have two models to compare with equal total10

rates. We can then attribute mean loss changes to changes in the CEP. As well, we
might gain insight into the convergence of catXL contract pricing by looking specifically
at the convergence of the CEP.

We can shift our point of view in the above argument and think of E (Sni ) as the ex-
pectation of the losses to the catXL layer, given only the events whose loss distributions15

have support beyond A. We denote this Ẽ (S̃ñi ). We can think of pni as the annual prob-
ability of getting ni events with losses above the attachment point A, which we denote
p̃ñi . Finally, we can think of p̃(l̃i ) as the probability distribution of the loss to the layer
given that the event loss is above A. Our mean loss due to event i then becomes,

∞∑
ñi=0

p̃ñi ñi

∞∫
0

(
1− p̃

(
l̃i < l

))
dl . (D4)20

In the equation above, we integrate the loss distribution from 0 to ∞ so that we cross
the exhaustion point (where there will be a delta function). Taking the sum of the above
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equation over the M events, we get a mean loss equal to λ̃
∫∞

0 ACEP. In this set up, λ̃
is the exceedance rate of event losses above the exhaustion point A and

∫∞
0 ACEP is

the mean loss to layer per event given that it causes a loss to the layer (A is used to
denote above the attachment).

Finally, as we have discussed above, the exceedance frequency of event losses5

beyond any loss threshold is unaffected by the inclusion of clustering (as we have
constructed it that way). Therefore, catXL mean losses do not change with the inclusion
of clustering.
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Fig. 0. Above is a depiction of a simulation timeline. The dots represent event occurrences. Years are on
the x-axis. Loss is represented on the vertical y-axis. The red bar represents an attachment point. The
blue bar represents the exhaustion point.
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Figure 1. Above is a depiction of a simulation timeline. The dots represent event occurrences.
Years are on the x axis. Loss is represented on the vertical y axis. The red bar represents an
attachment point. The blue bar represents the exhaustion point.
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Fig. 1. Data for a time series of 135 historical European windstorm events. The redline represents the
decadal rolling mean of the winter time NAO indeces represented by the triangle symbols. The black
line represents the decadal rolling mean of storm counts represented by the dot symbols. Data has been
standardized using the sample standard deviations.
figure
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Figure 2. Data for a time series of 135 historical European windstorm events. The redline
represents the decadal rolling mean of the winter time NAO indeces represented by the triangle
symbols. The black line represents the decadal rolling mean of storm counts represented by
the dot symbols. Data has been standardized using the sample standard deviations.
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Fig. 2. NAO index versus frequency for the 135 representative European windstorm events.
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Figure 3. NAO index vs. frequency for the 135 representative European windstorm events.
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Fig. 3. NAO index normalized versus total storm severity index (SSI) for 39 years of historical European
windstorm data. For each year of data, the total storm severity is defined as the sum of the SSI values for
all the storms in any particular year.
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Figure 4. NAO index normalized vs. total storm severity index (SSI) for 39 years of historical
European windstorm data. For each year of data, the total storm severity is defined as the sum
of the SSI values for all the storms in any particular year.
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Fig. 4. The upper right panel depicts occurrence exceedance probability (OEP) curves. The green line
represents the OEP derived from the 135 representative European windstorm events (historical data).
The blue dashed line depicts a model of the data using a Poisson frequency assumption. The red line
represents a clustered model for the data using a Poisson-Mixtures formulation of the Super-Cluster
methodology. The shaded grey bounds represent the 5/95 uncertainty bands on the empirical OEP curve.
The upper right panel depicts the 2 event OEP derived from the distribution of the 2nd maximum loss
(same plotting convention as for the upper left). The lower left and lower right panels depict analogous
results for the 3rd and 4th event occurrence distributions.
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Figure 5. The upper right panel depicts occurrence exceedance probability (OEP) curves. The
green line represents the OEP derived from the 135 representative European windstorm events
(historical data). The blue dashed line depicts a model of the data using a Poisson frequency
assumption. The red line represents a clustered model for the data using a Poisson-Mixtures
formulation of the Super-Cluster methodology. The shaded grey bounds represent the 5/95
uncertainty bands on the empirical OEP curve. The upper right panel depicts the 2 event OEP
derived from the distribution of the 2nd maximum loss (same plotting convention as for the
upper left). The lower left and lower right panels depict analogous results for the 3rd and 4th
event occurrence distributions.
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Fig. 5. The upper left panel depicts the OEP curves for the Poisson (POI) and clustered (CLU) models of
the data. The vertical and horizontal lines on the upper left panel depict the SSI (loss) and return period
thresholds of the attachment and exhaustion point of the catXL layer under consideration. The mean loss
to layer as a function of the number of re-instatements is shown in the upper right panel. The lower left
panel depicts the standard deviation of the annual aggregate loss to layer as a function of the number of
re-instatements. The lower right panel depicts the percentage contribution of the 1st annual maximum
loss to the catXL mean and standard deviation of the loss for the case of zero re-instatements.
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Figure 6. The upper left panel depicts the OEP curves for the Poisson (POI) and clustered
(CLU) models of the data. The vertical and horizontal lines on the upper left panel depict the SSI
(loss) and return period thresholds of the attachment and exhaustion point of the catXL layer
under consideration. The mean loss to layer as a function of the number of re-instatements
is shown in the upper right panel. The lower left panel depicts the standard deviation of the
annual aggregate loss to layer as a function of the number of re-instatements. The lower right
panel depicts the percentage contribution of the 1st annual maximum loss to the catXL mean
and standard deviation of the loss for the case of zero re-instatements.
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Fig. 6. As in Figure 5 except that the attachment and exhaustion point are defined at 20 and 50 year
return periods respectively.
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Figure 7. As in Fig. 5 except that the attachment and exhaustion point are defined at 20 and
50 year return periods respectively.
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